Polynomial Birth–Death Distribution Approximation in the Wasserstein Distance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial birth-death distribution approximation in Wasserstein distance

The polynomial birth-death (PBD) distribution on non-negative integers introduced in Brown & Xia (2001) is the equilibrium distribution of the birth-death process with birth rates {αi} and death rates {βi}, where αi ≥ 0 and βi ≥ 0 are polynomial functions of i. The family unifies many well-known distributions such as Poisson, negative binomial and binomial. In this talk, I’ll explain how a nice...

متن کامل

Minimax Distribution Estimation in Wasserstein Distance

The Wasserstein metric is an important measure of distance between probability distributions, with several applications in machine learning, statistics, probability theory, and data analysis. In this paper, we upper and lower bound minimax rates for the problem of estimating a probability distribution underWasserstein loss, in terms of metric properties, such as covering and packing numbers, of...

متن کامل

On Stein’s factors for Poisson approximation in Wasserstein distance

In this note, we provide a probabilistic proof of various Stein’s factors for Poisson approximation in terms of the Wasserstein distance.

متن کامل

Wasserstein Distance Measure Machines

This paper presents a distance-based discriminative framework for learning with probability distributions. Instead of using kernel mean embeddings or generalized radial basis kernels, we introduce embeddings based on dissimilarity of distributions to some reference distributions denoted as templates. Our framework extends the theory of similarity of Balcan et al. (2008) to the population distri...

متن کامل

Particle Approximation of the Wasserstein Diffusion

We construct a system of interacting two-sided Bessel processes on the unit interval and show that the associated empirical measure process converges to the Wasserstein Diffusion [27], assuming that Markov uniqueness holds for the generating Wasserstein Dirichlet form. The proof is based on the variational convergence of an associated sequence of Dirichlet forms in the generalized Mosco sense o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2009

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-008-0207-1